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1. Introduction.

The allocation of a specific weapon system type to an acquire target is

an important tactical decision in the fire-support process. Accordingly, the

determination of optimal (or even good) fire-distribution strategies for support-

ing weapon systems is a major problem of military operations research. The

problem is of interest to the military tactician so that he may have a clearer

understanding of the circumstances under which a supporting weapon system (such

as artillery) should engage the enemy's primary weapon system (i.e. infantry)

and when it should engage the enemy's supporting weapon systems.

In this paper we will examine the dependence of optimal time-sequential

fire-support strategies on the form of the combat attrition modei. Previous

work by Weiss [38] and Kawara [22] suggests that an optimal fire-support strategy

consists in always conccntrating all fire on one enemy target tyPe (although

this target type may change over time). We will consider a differei.tial game

with slightly different combat dynamics than the fire-support differential game

recently considered by Kawara [22] and show that optimal fire-support strate-

gies quite different in structure than those obtained by him may arise. More-

over, the solution to the problem which we consider in this paper involves a

solution phenomenon not previously zncountered in a Lanchester-type differential

game: the dual (.,r adjoint) variables may be discontinuous across a manifold

of discontinuity for both players' strategies.

Fire-support operations (as are any combat operations) are a complex

random process (see [26]). We will nevertheless consider a sipified deterministic

tSee pp. 1-33 to 1-43 oi [26] for a further discussion.
*ttSee [38] for a brief discussion of the distinction between a "primary" weapon

system (or infantry) and a "supporting" weapon system.

tttWe refer to a differential game as being a LanchesteLi-typs differentlal game

when the system dynamics are describei by Lancbester-typo equations of warfare
(see [34]).



Lanchester-type model in order to develop insights into the structure of ontiml

tiMe-sequential fire-support strategies. 11. K. Weiss [38] has emphasized thac

such a model of an idealized combat situation is particularly valuable when it

leads to a clearer understanding of significant relationships which would tend

to be obscured in a more complex model.

The problem of determining an appropriate mixture of tactical and strategic

forces (another aspect of the optimal fire-support strategy problem) was exten-

sively debated by experts during World War II. Some analysis details may be

found in the classic book by Morse and Kimball (see pp. 73-77 of [27]). The

problem was studied at RAND in the late 1940's and early 1950's (see [16]) and

elsewhere (see [1]). It would probably not be too far-fetched to claim that

this problem stimulated early research on both dynamic programming (see [2]) and

also differential games (see [16], [20]). Today the problem of determining

optimal air-war strategies is being excensively studied by a number of organiza-

tions (fcc, for example, [17], [25], [29], [36]). An idealized version of A. Mengel's

problem (see [16]) appears in Isaacs' book as the "War of Attrition and Attack"

(see pp. 96-105 of [21]). Discrete-time versions of this problem of determining

optimal "air-war" strategiLs have been considered by a number of workers as

time-sequential combat game- [5], [6], [15] (see also [7], [13]). A related

problem has been considered by Weiss [.43] (see also [371), who studied the optimal

selection of targets for ,ngagement by a supporting weapon system. More recently,

Kawara [22] has studied optimal time-sequential strategies for supportin weapon

systems in an attack scenario versioa of Weiss' problem. Other recent work has

considered various conceptual and computational aspects of time-sequential

combat Rames [28], [29], [301.

tSee [331, howevvr, Ior a .Just ticat iou c, th,- optir,.tIi,, strategies given
by Weiss [38]. A general solution algorithm is also pre-ented in this paper
[33].
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Since our work here may be considered to be an elaboratian upon and

extension of Kawara's fire-support differential game [22], we will review

his main results and relate our work here to them. Kawara [22] considers com-

bat between two heterogeneous forces, each composed of infantry (the primary

weapon system) and artillery (the supporting weapon ,ystem). The time-sequential

decision problem is to determine each side's optimat strategy for distributing

its supporting weapon system's fire over enemy target types according to the

criterion of the infantry force ratio at the prescribed-duration attack's end.

Kawara concludes that each side's optimal strategy is to always concentrate all

supporting fire on the enemy's supporting weapon system (counter-battery fire)

during the early stages of battle (if the total prescribed length of battle is

long enough) and then later to switch to concentration of all fire on the enemy's

Infantry. He states that this switching time "does not depend on the current

strength of either side but only on the effectivenesses of both sides' supporting

units" (see p. 951 of [22]). Moreover, an optimal strategy has the property of

always requiring concentration of all supporting fire on enemy infantry during

the final stages of battle.

Thus, Kawara concludes that for his model the optimal fire-support

strategies do not depend on force levels. However, this is only true provided

that the appropriate side's (in Kawara's numerical example, the defender)

supporting weapon system is not reduced to a zero force level before a critical

time. t Let us assume, therefore, that neither side's supporting weapon system

t Kawara does not determine the optimality of extremal strategies determined for
his problem (i.e. show that sufficient conditions of optimality are satisfied
(see [4])). We use the work extremal to denote a trajetory on which the
necessary conditions are satisfied.

*t See the expression for T2 on p. 949 of [22] and its plot in Figure 4 of

[221.

3



can be reduced to a zero force level. t For this condition the optimal fire-

support strategies are force-level independent and may be expressed solely in

Zerms f "time-to-go" in the prescribed duration battle. The purpose of this

paper is to show that a tactically realistic variation in the attrition equations

leads to a problem with force-level dependent optimal fire-support strategies.

This result has an important implication for tactical decision making: optimal

time-sequential allocation of fire-support resources depends on not only initial

intelligence estimates but also on a continuous monitoring of the evolution of

the course of combat.

Thus, the purpose of this paper is to illustrate the dependence of optimal

fire-support strategies on the nature of Lanchester-type combat attrition equa-

tions (see [3..]). We consider a slight variation in Kawara's problem (i.e.

different combat dynamics) for which the structure of the optimal strategy of

one of the combatants is significantly different than that in the original prob-

lem [22]: the optimal strategy of one combatant depends directly upon the enemy's

force levels and is no longer to always concentrate all fire on either the enemy's

primary or supporting weapon system. Furthermore, wi will show that an optimal

strategy in which a side divides the fire of its supporting weapon system between

the enemy's primary (infantry) and supporting systems can only occur when the

enemy's infantry has some fire effectiveness (in the sense of a non-zero Lan-

chester attrition-rate coefficient) against his infantry. The optimal strategy

of one side to sometimes split its fire is very similar to that which occurs in

a one-sided (optimal control) problem previously considered by us [31. (see also

[321) for the optimal distribution of fire by a homogeneous force in combat

against homogeneous forces. In [31] the enemy ccnsisted of two weapon system

I Initial force levels and the known length of battle may be sufficient to
guarantee this for a given set (or range of values of) Lanchester attrition-
rate coefficients.
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types, each of which undergoes attrition at a rate proportional to the product

of the numbers of firers and targets (referred to, for convenience, as "linear-

law" attrition). 'n fact, this previous work of ours [31] was the motivation

for our examination here of other attrition structures in Kawara's problem.

2. Kawara's Fire-Support Differential Game.

Since Kawara's fire-support differeutia] game is the point of departure

for this paper, we will review the development of his model. The reader will

find it convenient to compare the mathematical statement of Kawara's problem

(1) with the fire-support differential game studied in this paper (2j in order

to understand the dependence of optimal fire-support strategies on the mathe-

matical form of the attrition equations.

Kawara [22] considers the attack of heterogeneous X forces against the

static defense of heterogeneous Y forces. Both the X and Y forces are

composed of two types of units: primary units (or infantry) and fire support

units (or artillery). The X infantry (denoted as X ) launches an attack

against the Y infantry (denoted as Y1). We consider that phase of the attack

which may be called the "approach to contact." This is the time from the initia-

tion of the advance of the X forces towards the Y defensive position until

the X forces actually make contact with the enemy infantry. It is assumed

that this time is fixed and known to both sides and that infantry fire has

negligible efiectiveness against the enemy's infantry during this time. During

this time the fire support units remain stationary, and each unit has the capa-

bility to deliver either "point-fire" counterbattery fire against enemy artillery

or "area fire" against the enemy's infantry.

It is the objective of each side to attain the most Favorable InfUintry

force ratio t possible at the end of the "approach to conti:t" at which Lime the

SSee [35] for some insights into the dynamics of combat from considering the

force ratio.
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force separation between the opposing infantries is zero and artillery fires

must be lif-!d from the enemy's infantry in order not to also kill friendly

forces. Thus, the decision problem facing each commander is to determine thie

"best" distribution of artillery fire over time between enemy infantry and enemy

artil~ery in order to maximize the quotient of friendly infantry (numerical)

strength divided by enemy infantry strength at the end of the approach to con-

tact. This situation is shown diagrammatically in Figure 1. The reader is

referred to Kawara's paper [22] for further details of the model's development.

It should be pointed out that this model also applies to the case of an amphib-

ious landing and the determination of the optimal time-sequential allocation of

the supporting fires of Naval ship guns.

Mathematically, the problem may be stated as the following.t

Ix l1( t f )
maximize minimize (--t- ,

with stopping rule: tf-T 0,

dx1
subject to: -1 - - Y2 i

(battle dynamics)
dx 2-- t- -(-v) a2Y2,

dt,
dy 1
- -=UblYlX2 ,

dy 2 - (l-u)b x ,

with initial conditions

~=0 ad)~=0

(t=O) and Yi(t= O ) = y for i = 1,2,

tWe use capital letters to denote the closed-loop (or feedback) strategies (see
(19]) of the players aid the corresponding lower case letters to denote the
corresponding sLraLej1J v,.rJales (see (41). A stratgi"C varioble is the
realization (or outconl) of a strategy. Thus, u(r) U(t,x, ) and v(t) =

V(t,X, ).
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[and

xlx 2,yl,y2  0 (State Varquality Constraints),

0 e u,v 4 1 (Strategic Variable Inequality Constra-nts),

where

x1 (t) is the number of X infantry (i.e. Xl) at time t,

x2(t) is the number of X artillery (i.e. X2) at time t,

slrm!larly for yl(t) and Y2(t),

a i is a constant (Lanchester) attrition-rate coefficient

(reflecting the effectiveness ot Y2 fire agai,.st Xi ),

simiLarly for bi,

and

u(v) is the fraction of X(Y) artillery fire directed at opposing

infantry force:..

We observe that for T<4 4 it follows from the battlc, dynamics (1) that

x (t),yl(t) > 0 Vt c [0,T]. Thus, the only state variable inequality con-

straints (SVIC's) that must be considered are x,,y 2 k 0.

Kawara's results and conclusions [22] have been discussed in Section 1

above.

3. Another Model for Opt4mal Fire-Support Allocation.

In this paper we will study a variation ,sf Kawara's 1221 fire-support

diff.cential game (1) just given. We will see that for this problem 'he struc-

'.re of the optimal fire-support strategy for the attacker has a fundamentally

different form than that for (1): the attacker rust sometimes split his fire

between the defender's primary and supporting units in order to "avoid overkill."

tSee 1101 (also 181, [91) for methodology for the predicio:i of such coefficients
from weapon system performance data.
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Furthermore, the nature of this split in an optimal strategy depends on the

allocation of the defender's supporting fires.

Let us again consider the attack of heterogeneous X forces against the

static defense of heterogeneous Y forces. Each side is composed of primary

units (or infantry) and fire support units (or artillery). The X infantry

(denoted as X1) launches an attack against the position held by the Y infantry

(denoted as YQ. Again, we will consider only the "approach to contact" phase

of the battle. This pahse is the time from the initiation of the advance of

the X1  forces towards the Y defensive position until the X forces actually

make contact with the enemy infantry. It is assumed that this time is fixed

and known to both sides.

The X1  forces begin their advance against the Y1 forces from a dis-

tance and move towards the Y1  position using "cover and concealment." The

objective of the X1 forces during the "approach to contact" is to close with

the enemy position as rapidly as possible. Accordingly, small arms fire by the

X1  forces is held at a minimum or firing is done "on the move" to facilitate

their rapid movement. It is not unreasonable, therefore, to assume that the

effectiveness of X1 's fire "on the move" is negligible against Y1 , We assume,

however, that the defensive YI fire causes attrition to the advancing X1

forces at a rate proportional to the product of the numbers of firers and tar-

gets. Two possible justifications of this are as follows: because of the

movement (and intermittent concealment) of the X forces and the distance

involved, the Y defenders either (1) fire into a constant (but moving) area

without precise knowledge of the consequences of their fire or (2) when they do

aim fire at X1 targets, the time to acqiire such a target is inversely propor-

tional to the density of XI forces and much greater than the time to kill an

9



acquired target. Under each of these sets of circumstances the assumed form

of attrition has been hypotehsized to occur [I], [37].

During the "approach to contact," the fire-support units remain stationary.

Each unit has the capability to deliver counterbattery fire against enemy artil-

lery or "area fire" against the enemy's infantry. In other words, we assume that

each side's fire support units fire into the (constant) area containing the

enemy's infantry without feedback as to the destructiveness of this fire. On

the other hand, the effectiveness of counterbattery fire is not symmetric with

respect to the two combatants. We assume that the defender has the capability

(for example, through the use oi aerial observers) to sense when an enemy sup-

porting unit has been destroyed so that fire may be immediately shifted to a new

target t and that fire is uniformly distributed over the survivors. The attacker,

however, either (1) does not have the capability to sense destruction of enemy

fire support units accurately (and hence distributes his fire uniformly over the

(constant) area occupied by the defender's fire support units) or (2) if he does

have adequate fire assessment capability, then target acquisition times (which

are inversely proportional to the density of the enemy's fire support units) are

much larger than the time to destroy an acquired target. This leads to a Y2

attrition rate proportional to the product of the numbers of X2  firers and Y2

targets [11], [37].

tAlternatively, we may think that the attacker has massed so much artillery that
X2  targets are always easily acquired by Y2 once an X2 unit has been
destroyed. Moreover, it will be assumed below that the initial X2 force
level is sufficiently large to guarantee that it is never driven to zero.

t This assumption is not essential for the structure of X2 's optimal fire sup-

port strategy. A similar structural result may be obtained when X2 's attrition
is the same form as that for Y2 " We have made the above assumption, moreover,
so that the resultant attrition model is most similar to Kawara's [22] but yet
yields significantly different results for the attcker's f ir( support stratgy.

10
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It is the objective of each side to attain the most favorable infantry

force ratio possible at the end of the "approach to contact" at which time the

force separation between the opposing infantries is zero and artillery fires

*.vust be lifted from the enemy's infantry's psition in order not to also kill

friendly forces. Thus, the decision ?roblem facing each side is to determine the

"best" distribution of artillery fire between enemy infantry and artillery over

time in order to maximize the infantry force ratio at the tire of contact between

the two infantry forces. This situation is shown diigrammatically in Figure 2.

The above assumptions lead to the following differential game with an

attrition structure slightly different than that in Kawara's problem [22).

maximize minimize {x l (tf)

U V Yl(tf) '

with stopping rule: tf - T 0,

V dx1

subject to: -I - val XY2 (2)

(battle dynamics)
dx 

2 = -(l-v)a 2Y2,

dyI
dt 1= -Ub lYlX 2'

dY (l-u)b2Y2 X2- dt (1 u b .X2

with initial conditions

x (t=O) = xi and yi(t=O) = yo for i 1,2,

an~d
XlX2Yl9y 2  0 (State Variable Inequality Constraints),

0 I u,v A-l (Strategic Variable Ineluality Constraints),

where all symbols are (essentially) the same as defined above for problem (I).

11
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We observe that for T < 4- it follows from the battle dynamics (1)

that x1 (t), yl(t), and Y2 (t) > 0 Vt c [0,Tj. Thus the only SVIC that must be

considered is x2 k 0. However, let us assume that the force level of the attacker's

artillery is never reduced to zero. In other words, we consider the special case

in which x and T are such that x2 (T) > 0.

4. Characterization of Optimal Fire-Distribution Strategies for the Supporting

Weapon Systems.

It snould be clear that in (2) above we have al,a 1 2 ,a 2 9b1 ,b 2 > 0. Although

the results of A. Friedman [14] concerning existence of value do not apply directly

to our fire-support differential game (2), they do apply to a suitably modified
dx 2

version. If we were to consider a version of this problem with -- (-v)a 2Y2+ r2

where r2 > 0, then it may be shoin (see pp. 210-230 of [14]) that this "modified"

differential game has value and that a saddle point exists in pure strategies (see

pp. 2-4-235 of [14]). We will now develop the basic necessary conditions of

optimallty for (2).

1or x,,x 2 ,yly 2 > 0, the Hamiltonian for (2) is given by [12]

H(t,,).qu,v) = -p (al1 xlyl+val 2 xlY2 ) - p2a 2 (l-v)Y2

- q1 ublylx 2 - q 2 (l-u)b2y 2x 2 , (3)

where we have adopted the following correspondence between state and adjoilnt

variables:

state variable dual variable

xi Pi

Yi qj for i = 1,2.

13



The adjoint systemof differt.itial equations for the dual variables is

dp1  a 1

dt ax irYPl + v*a 2Y2P 1  with p].(T) = f

y1
dp 2

d2 aH

dt- _ x2  u*bYqI + (-u*)b 2Y2q2  with p2(T) 0, (5)

dq1  f
dq I aH 1 x1 PI + u*b x q with q2 (T) - ( 2 (6)& = -ayl~ Ubl2q 1(26)

dq 2 *- H vka x p + (1-v*)a 2 2 + (1-u*)b x2q2  with q2 (T) = 0. (7)

The results of Berkovi:z [3] say that H, Z(t), and %(t) are continuous

functions of time except possibly at manifolds of discontinuity of both U* and

V* (see Section 4.3 below).

When xlx,2 ,yly 2 > 0, the extremal strategic-variable pair, denoted

as (u*,v*), is determined by the max-min principle. Hence, we consider

maximize minimize H(t.,xy,,,u,v),
0 u I O-1.

so that

1 for Su(t) > 0,
u*(t) = (8)

0 for S (t) < 0,
u

where the U-switching function, S (t), is given by
u

Su(t-) = bl(-ql)y I - b2 (-q2)y2, (9)

and

I I for S (t) > 0,

V*(LM (10)

0 for Sit.) < 0,
V

14



where the V-switching function, S (t), Is-given by

Sv(t) - a2P. (1)
a1 1 1x1  2-

It is readily shown that

fx1
Pl(t)Xl(t) = constant = Pl(T)x (T) = -, (12)

yl

fxd= 1

dt (q 1 )1 a = y y(t) > 0 (13)Yi

and

dS
V -a 2 (l-u*),(t) - a 2 blqlyI . (14)

We must further investigate the possibility of singular subarcs (see [31]

or Chapter 8 of [12]). Let us furst show that it is impossible to have a

V-singular subarc. In other words, v*(t) must be 0 or 1 almost everywhere

in time. The impossibility of a V-singular subarc is established by showing
ds

that - - > 0 for all te [0,T]. It is clear that

(l-u*)S (t) 0 for all t E [0,T]. (15)

f

Considering (13) and the fact that ql(T)yl(T) =- < 0, we see that1 1 f<
ql(t)YI(t) < 0 for all t E [0,T], whence follows the assertion via (14).

3H
It is possible, however, to have a U-singular subarc on which 5u 0

(or, equivalently, S u(t) = 0) for a finite interval of time. There are Iwo

cases to be considered: (1) v* = 1 and (2) v* 0.

4.1. U-ingular Subarc on Which V* = 1.

When v* = 1, it is readily computed that

dS f

- f -1

dtj a I i b y l a ] 2hY2_15(6



and

u = x (aL ., *b - (a1bY)(-u*)b} (17)
= I) ~TIJJ1~l1 a1 2 2y 2  u. 2 .

yl

Considering (9), the requirement that 0 yields the first condition for

a U-singular subarc with V* = 1

blqlY1  = b2q2y 2. (18)

Considering (16) and (18), the requirement that 0 on a singular

subarc on which -- = 0 for a fiite interval of time yields the second condi-[ au

tion for a U-sngular subarc with V* = I

a11 l = a12b2Y2  (19)

On a subarc on which the first and second conditions for a singular subarc
I d2 (aHhold we additionally require that d (fu = 0 so that (17) yields the

singular strategic variable value required to keep the system on the singular

subarc

ut M +b2 (20)
t __L d 2 

>

Checking the generalized Legendre-Clebsch conditiont [23), [241 u 0,

we find that on a subarc on which (18) and (19) hold we have

f
D t (x2)2l 11 (b1 )2yl + a1 2 (b2)  > 0

"1

We may write the equation of the U-singular surface (see p. 683 of [31] as

Y2 -a12bl for v* = 1. (21)
Y2  11l I

his is~ a neco;sary cond ition for optinaliLV. R. lsaac,; [91 gives an
equivalcnt condition (sCL'ee 1)

A



4.2. U-Singular Subarc on Which V* 0.

When v* = 0, it is readily computed that
f

dS xf

cit -- (al1b y -a 2b2y2) - b2y2Sv(t), (22)
Yl

and

d2S dS

dt = UblX2 dt-u + a2b2 Y2{(Us u(t)+b 2q2Y2 +P2 2 [fub (lu)b2]1, (23)

so that the first and second conditions for a U-sin ular subarc with V* 0

are, respectively, (18) and

f

alblYI = al2b2y2 + b2Y2 I{-Sv(t)}. (24)

It should be noted (see [l18) that the above singular surface exists in

x space. It is convenient to write

Yl a 12 b 2 b
= + f[-S (t)} for v* = 0. (?5)

Y2 alb I ab x f
y2  a11b1  11 bx1 V

The singular strategic variable value is given by

u*(t)(1 M = 2_+. (26)

The requirement that u* Z 1 yields that on a b-singular subarc with V* = 0

we must have

b2(-q2)y2 : b p2x2. (27)

It is readily checked that the generalized Legendre-Clebsch condition is

satisfied.

4.3. Discontinuity of Adjoint Variables Across Manifold of Discontinutty_.of

Both U* and V*.

It is convenient to itro ,,.e the ackw irds time t dec fined by

T= T - t. (28)

17



From (20) and (26), we see that u*(T) must change, in general, discontin-

uously from b2/(bI+b 2) to b 2 /(b 1 +b 2 )(1-q 2 Y2 /(p 2x 2 )) whenever v*(T)

changes From 1 to 0. Let us consider the totality o; trajectories on which

this happens. The locus of points in the t,!,L space for such simultaneous

switches is then a manifold of discontinuity of both U* end V*. Across such

a manifold the adjoint variables need not be continuous (see [3]).

Let xv =T ,v denote the backwards time at which v*(T) changes

from i to 0. For future purposes, it will be convenient to consider a

simultaneous switch with u* changing from the singular control b 2 /(b 1 +b 2 )

to 1. Then the manifold of discontinuity of both U* and V* is given by

F~t , =t - T + v = 0,

and (29)

1(1) allbly, - a1 2 b 2 Y2 = 0.

Across the manifold of discontinuity, we have

T (r+) T (-) 0 LF a

T + T IF DG

and

H(T ) ( p-
Hr (-3

v v at at

or

P (Tv) = p (Tv) - - (30)
+ v

(-q(T)) (-qlT + P + + oa 1 1 bl, (31)

(aqn (-q(Tv)) + P a 1 b2 , (32)

and (r2 T2 12

If(T + I (T) + p. (33)
VV

18



Considering (9) and (11), it is readily shown that

S (T) = o{a1l(b )
2y1 + a12 (b2 ) 2 Y) + p(bY 1  v b v (34)

u v 1 1 1 1 2 Y 1 -DY b 2y 2 DjY-

and

S vTv -P(a2x -1 -- a 2 -x) (35)

Recalling that u*(T') = b2/(b u*( + v*(Tv )  1, and V*(T + 0,

we may substitute (30) through (32) into (33) to obtain for a,:xy 1 ._1 +

DTa 1xy ax 1 - axy 1

2 2 ax2  1 1l2 By,

v v

Then we may write

$u(T ) = a (b) 2y1 + a(b)2

a1 1 (b1 ) 2 Ylx 2 (b Yl By] b2 y2  -v)

+ - - a1 @.-2 , (37)

111 1 ' 2 2 32 1 y1

and

at aT
-a(b )2yX2(a x "V- a- C
+ 1 1 2 2 1ax 1 2 ax 2

vvr at (38)

.1 x1 2 b 2 1y1 2 -.5-

5. Snthesis of Extremal Strat'gic-Variable Pair.

By the synthesis of the extremal strategic variable pair we mean the

explicit detxrminati .m (using the bo,'ic necessary cold i i ills of opt irna Ii ty)

19



'4 . 7.

of the time history of the extremal strategic varLable pair (u*,v*) from

initial to terminal time (see [211 and also [311-[331). The basic idea is

to trace extremals backwards from the terminal manifold (where boundary con-

ditions for the adjoint va-iables are known) in such a way to guarantee the

satisfaction of the initial conditions. Thus, it is convenient to introduce

the backwards time T defined by (28).

5.1. Extremal Transitions in Strategic Variables.

It seems appropriate to examine what are the possible transitions (ot

changes) in each strategic v rJ able as we work backwards from tile end (i.e.

as
as T increases). It has been shown above that --v < 0 for all r ( [0,T .

Considering the boundary conditions (4) and (5) for the adjoint variables,

it follows that S (r=O) > 0. Thus

I f for 0 T T v- Sv

v = (39)

It will be convenient to refer to that phase of the planning horizon during

which v*(t) = 0 as V-Phase I (i.e. 0 S t < T - tv) and to that during

which v*(t) = 1 as V-Phase II.

Extremal transitions in u* for increasing T as shown in Figure 3.

Thus, this figure shows what changes we might expect to observe In u* as

we follow an extremal backwards from the end of the planning horizon at T = 0.
dS xfu [(16Y2 ihSu 6

During V-Phase II whea v* = 1, - = [I)(a lblY -a b y ) with S(T=)

b x > O. Whe;i u* = 0, then TT- <  During V-Phase I when v* = 0,

dS x d
dr= Xl (ai b y 1-a1 2 b2y2 ) + b 2 y2S(T). During both phases, the singular

subarc may be exited with either u* = 0 or u* = 1. Once u* becomes 0,

it remains this way. The above statements will be further jiistified below.

tIt should he kept in mind that , for example, u*(t) = 11*(t ,x,.



U*=U S  ,fi

u*=O

Note: b
2- 2 for v* = 0,

tb+b 2  p2xf2)

I U = 2L°2.. for v* = 1.

: [1bl+b 2J

Figure 3. Extremal Transitions In u* fur Increasing T.
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5.2. Extremal Synthesis for r* < T

From the abcve we have

f

S (t=O) =b - 0, (40)

so that by (8) we havc

u*(T) =I for 0- T 6 T , (41)
U

where Tu  is the smallest zero of the equation SU (=T u ) 0. If the U-

singular subare is reached in V-Phase II (see Section 4.1. above), then let

us denote the backwards switching time at which u* changes from 1 to

b 2 /(b 1 +b 2 ) as T*. Clearly, it is necessary that T* < T for this singular
2 2u u v

subarc to appear in the solution. Thus, in general, there are two cases to

be considered:

(1) T* < T
U TV

and (2) * T>
u V

In this paper we will consider only the former case, with the latter one follow-

ing along the same general lines of development. We therefore assume that a1 l,

f f f f *
f f f and y are such that T < T. We will give2,-x , x2 - ', u-----!

numerica1 results for this case below. Moreover, in all our numerical computa-

tions we have only encountered this case.

5.2.1. Extremals Near the Terminal Manifold.

dS Y
Recalling (16), we see that __ > 0 (<0) if and only if -- > (<)

alb 2

a Considering (40), it is clear that S (T) > 0 for v* = 1 when

Yf a2b Yf a 1 2b
> j . However, S (t) may change sign when - -< . The U-al-b- u f a b

y 2 y 2  11 1

singular sularc occurs when both S (i t ) -- 0 and a 1  a 21) at
t i 11it I 1 I t2 2 at2

-L = -'*. Tius, -r* is the smallest root of

22



bl + + e- f I 0. (42)

b x f + bx1 2 1 2 ll1'1

If Yl is given, then S (T= *) = 0 and aby = abY may be combined

Iu u 1 1 122 2f
to yield the value of y2 required in order to reach the U-singular subarc

bl (allYbl xf)

(denoted as y2*). Thus, for ai1 b2 x w have 2Y2 1 1 1 2-Y2 b 2a 2(1-b Xf"r* )

(Other results are given below in Table 1.) We denote the corresponding ratio
y

of yfto y f* as
When S u(T= ) = 0 with al1blY1 < a12b2y2 , it follows that Tu is

the smallest root of the transcendental equation

a Y f f b f

[b1  1) -al 2 b2 Y2 T + ale = 0. (43)
x2  x2

ay be hown uf f.
tm e that 3r> 0 where r y./y 2 This latter result is useful

in proving the following:

THEOREM 1: Assume that T > r*. Then, u*(-) = I on any eyLremal
F v u f f

as long as v*(T) = 1 for f > I- .
f ~fY2 Y

PROOF: The proof is by contradiction. Let r = yf/Y2f

f (a) Assume that we could have a switch in u*(T) (with v*(Q) = 1)
for - "-f. In other words, we can find T such that Suyr=t u ) = 0fo fu u u
with 2 2

Su(T) > 0 for 0 T < 1 (44)

f fYl .Y. *

for - [.Y~~

Y2 2

23



f f

(b) Consider r - + with c > 0 and sujch that T < x
Y2 2 uT

Then it may be shown that >- 0. In particular --- * > 0. This
Br 3r

J2
implies, however, that T > * for r = r.

U i

(c) Observe that * for 0 :5-T 5 T < T so that y1 /y2(c Oseveth IV* i1 V ?

bft f lT

yfY2 fe . Hence,

yl a1 2b2
- (T=T ) > - for r = r, '45)

dS
since then r (r) > T*. It has been shown above that dx> 0 for 12

dS dT

alb2/(albl). Thus, (45) implies that u ('--r ) > 0, and hence
12 211 1 dT U

0 = Su (T = u ) > Su (-) for T (T Xu- U). (46)

This last statement (46) is a contradiction to (44), and the theorem is

proved. Q..D.

Other results are obtained in a similar fashion.

5.2.2. Field Construction.

f f f f
For a given set of terminal values x1f x2, Y , and y2  an extremal

may be traced backwards from the terminal manifold by a backwards integration

of thc state and adjoint equations combined with (8) and (10) (also (20) or

(26)). By varying these terminal values the entire field of extremals (see

p. 128 of [12]) may be obtained.

he various types of extremals that may occur in the field of extrenmals

are shown in Figure 4. This figure is representativo. of all our numerical

resutlts for 't* < T (see Section 5.2.3 below) . Pertinent information con-
U V

cerning each type of extremnal i% given in Tablv I.
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Table 1. Extremal Trajectories for Fire Supoort

Problem with T < T

f 
f

I~l V"

1. Ps 0 : . for 0ST Ic with --
=Y2 Y2

T is the smallest positive root ofU

-blX2fTu
. ... .e = 0,

with the following bounds established:

1 2

f f 1 *

for allYl > blX2 --- f" u f---

fo l, bI x2 f u =bxfalY1 1 bl 2

13 1y 1 2

f f 1 1
for x y b : --f 1 bx2

•* <1

for a y -f u 1 1
f f

fo . 1 2: Y2 1 2b2

Also

f

~~a12b 2

S 
--(T) a 2 b I y i 

+ 
X1

+ [a a(blb 2

12 6 1 2
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Table I. (cont.) - 1

4

1. PSO1: (concluded)

Let S T=u) Also, on PS0 we have

v U so
f fa +iil be X2 T

b x

2bl2
x2 (r) = x

f

Y(T) y f e1
2

Y2(r ) = Y2

and

f f
bxT

pl(-r) = - exp {-[a 1 T  + -- 1- (e 12 )

Yb b x2
ff f

P X a+ 11 f l b I ,

ql(T) = Y e 1W

f

q2 (r) +a2 f)

27
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Table I. (cont.) - 2

2. P11  u*(T) b 2 (b1+b2  for * T fT

where Tu is determined in 1. On P we have

S (T) 0,

and a11 b 1 y a12b2Y2 .

T is the smallest positive root of Sv (--T ) = 0, where

fSvT u*  a u*[Xl a,,

S(T) S + a2 b y- 1(_f) (Oxf)2

/ufY a11 j - *  all

+l* Y 1 +  uTT -+ [q - U a01  exp (64(1-u)]_

with IXb f) :x2)

with b b/(bl+b . An upper bound on T is given by

TV . a12/(a bl)

11

Also, on PS1 we have
Ua1 + 12Y OeX2f(T-Tu)1

x2

f *

u* ex2f (T-T)

Yl(T
) = Yl 2

f *f 0x2(rr,-,)

Y 2 
(
T - Y2 e

and

- Yu* +fl 0 x2f(T-Tu- x ihP * fJ

Pl (T) "P exp L Le, wit pu D'
f a f * f

u*'l _ll al,1 [ ,y ae._- al] with
"p 1  I f +  f

Yl (0 x 2  x O f)

a 1-Ox f ( -T f fO] * -1

q ( ) -, qu c - --V 11 - 2ce

• f Ox ,_ + f
ff f *

-Ox (T-1 ) fx,) a12

q (T) q T*)012 21

2 2 - x, a -2 ly f f

x 2
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Table i. (cot.) - 3

3.Iz for 0O9. V with -
3 r 1  u (r) 1 ~ ]

" v*() = Y2 Y2

T is the smallest positive root of Sv(T-1) 0, where S v (T)

is given in 1. An upper bound on Tv Is given by

, a 1 2
v 2 b ,

It has been shown that Su(T) > 0 for 0 T A .v" The solutions to the

state and adjoint equations are the same as those for P I given above.

S tu*()ulI

4. { *(T) -01 for TvS. I
pi V*(T) = 0 vu

We have that S (T) < 0 for T > T and that

dS Ix t
f(T) = b2Y2SV(T) + (a  b y ()-a 1 b2 y 2 ) "

di f)) 1111 1
Yl

I
Also, on P I e have

Al
d 1  allxlYl with x 1(-') v ' 1,

x2 (T) X x + a2Yf(T-)

a fY T v epbXv (T a2b1 2(-rv))
Y1 (i) - Yl exp1 b X2(i-2v) + 2 -2

f- Y2(i) mY2,

and
dpl v

- -allYlp1  with p1 (a=V
) = Pit

dP2
- -blY1y with a2 P

dq X f

d -all -f bIx 2q vith qI(imiv q) '

Yl
"q2 vq 2 with q2(rTi) q2 "

We have not been able to develop solutions in terms of "elementary" functions

to the equations for x1, Pit P2' q,, and q2 '
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Table I. (cont.) - 4

5. Pfor T T A
A2" v*()SL

Tv is the smallest positive root of Sv (r- ) 0, where

f f

) 5SLII + (b[x)~ + [YSLI t

a a b f (- II.

-+ H II 11 e 1x2-SL
b tSL ) b

12 (b e 2

Again, an upper bound on Tv is given by a1 2 /(a2b1 ). It has been shown

that S (T) > 0 for T L < T 9 . Also, on P we have
•~~ SLI A2l2,TSl

SLII b llTl

x (T)= xSLII exp a yLII (- SL) + 11 1,e12( SL

1 2

x2(') = x2,

f II
SLII blx (2C-SL)'

y 1  e
Yl(-[)  =Yl e

( SLII
Y2 )  

Y2

and

aySLIIb f CT1
SLII SLII II aY1 1 1  L1X2 SL

P ( 1) 1 p expj-a1 2Y 2  (r-'SL) b f2
1 2 f

SLII 1 __

with IIx y 1

SINa SLI
I 

2e 11 -SLII (' I

P2 (T ) 2 bl 1 Y 1-- f fe-q I fT- SL

y1  ( 1 2) 2 2

al b xflX2

11___ 1 2 S

( b~x ) 2 e

q2(T) = qSLII e a12 ( TiJ SL )

1
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Table I. (cont.) - 5

I. u*(?) - i

6. PA for i T S.T T
A2 V*(T) O V u

Results are similar to those for PA above in 4.

7. u*() 
1  t S. I7. A3: IV*(T) -0 v u

Results are similar to those for P above in 4.

u*(r) - b2 /(b+b 2)(l-q 2Y2 /(P 2 X2 )) uS  *
8. PS2: for r r.;I

v*(r) - 0 v u

As usual, we have that S v() < 0 for i > Tv . In order for a

U-singular subarc to be possible for T a v the following condition mustV

hold at T v

b - * *- )x** Z -b1P2( v )2( v )  2 2((' v ))y2(Tv
)

Also, on PS2 we have

dx 1 .V*
d a11xlYl with x1  ) = x1 ,

dx2  * v*d- a2 y with x (T== ) - x 2dr -2 2 2 v 2'

dYl * with y ( = Yl
=r Usx2Y1

dY2 *= v*d . (l-u*)b 2 x2Y2  with 2(  
* - Y2

dT S2 2YY2 ~2
and

dpl * v*1 -alyP 1p with Pl(,TT) = p1

dP2  * v*

-blYlq1  with P2 (T Tv) = p2

f
dql Xl * * v*

dT a11 " " f u b1x2qI with q1 ('T=t) q1

dq2  * (x=.rq) v*d -a2 P2 - q with q2 -= 2

tA further discussion of the continuity of the adjoint variables is to be found

in Section 5.2.4. below.
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Table I. (cont.) - 6

T yf f

9. u for 0 z x z x with -1

v*(T) =1 u

T is the smallest positive root of

U

f f f

(b "1 - abfbr + !a 1  2  =0.'b I -x2f a122 2u x f

u f f

It should be noted that r 0, where r = y2. It may be shown that for

< [ 2f,

+ - < < <u < .u

a 12Y2

where the determination of x is given in 1. We also have thatU

u(r) < T Ur )  for r < r Nf and xf held constant). The solutions

to the state and adjoint equations are the same as those for PS0 I given above.

Let S(T=u)[ SU P('r=T pit)P etc.
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Table I. (cont.) - 7

10. P 'u*(): o for Tu;L 'TTvz0 B2"v* (r) 1

It follows that for all T > r we have S (C) < 0 and - (T) <
u u Y

a1 2b2/(a11b1). Tv is the smallest positive root of Sv (rr ) - 0, where

S (') is given by
~f

Sv (r) - Su + a2b2Y[

1 2 2

+[q~{ +.aJ2j(T- ) a 12  exp~bfb (T-.r]
1 2 (b2 x2

Also, on P we have
B2f f

x~ ~ (T xaepa UTT+12Y2 be2x2

xI (r) - x1 exp{allY1(r- u) + 1 [e (-Tu)

x2 (r) - x2 ,

y1 (T) =

2 2f

Y2(T )  y Yf2 exp{b 2x2 -uT)},

and f f f

u a1 2Y2 [ex 2(r-iu

P )  Pl exp{-ay[(-u b e 1) with
U b x f 1 x1 t y1

a2 +
) f a f + b (rf - a 1 2P2 - b1Y 22 +  x1 

+ 22- (b2x 2)2

f
ql(T) fiqu - all (T- u)

f f-2f f

q2  e
1'J 2' 2 1
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Table I. (cont.) - 8

I. : u*(r) - o11. PB3 for IrI A T A
B v*() -S1 v

is the smallest positive root of S (=T) 0, where

SSLII x) 12 [SLII(I)
V v + +

y l ( 2 2 x1

+ al c 1I a1 b2x2 ('- SL(T-SL) e](b 2x2)
2

Again, an upper bound on T v is given by a12/(a2bl). It may be shown that

II IIS (T) < 0 for all T > TS Also, on P we have
u S B3

';LII b f IISLISTII II a1 2y2  b2x2Qrm~tSL)

X 1 () x L II  exp{ally I  (T-'r SL) + [ le -],

x x2 '

SLII
y1

(T ) = Yl

SLII f II

ad y2 (T) = Y2  exp{b 2x2 (r-TSL), 
Sand SLII b f. II.f

(T LSLII LII II a12Y2  [ 2x2Qr- SL) SLII 1p 1 1  (-SL) [e -i] with Pl SL f)
b2x2 x1  yI

LII S LII Xf a1 SLII 1f 2  f II

[I 1 2 SLIl a2] 1  SL__( T )  P2 b 2Y2 , f,2 + + - T-TSL2 e
2 )f(b 2

2! D22) 1 2x2J b2x 2)

f
q('r) SLII - a (

[- -TII)y1I

(X){ a 2 12  SLII 2jj e 2 ~~ SL

y 1  b 2x [ 2 x 2 x /
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Table I. (cont.) - 9

_. u*()O *

12. for4 .V
30

Itmaybe(showthat S (T) < 0 and S v ) < 0 for all T > . Also,

I
on P we hae

B4

x1(r) xr* exp{aiiyv*(T-'I)},

(x 2 2a 2 fo b2 (x*) >(x 2 ) -2 y2 coth(-A(T-T )+B) for > a2y 2.

x )- *{1 b2 xv* b2 (x*2 V
-2(T) x 2  4 22 v for a2 Y2

/2a2 v* - V* 2 *for 21 ,V*)2 <

2bY2 - (x2  tan(C(T-Tv)+D) 2-(- - 2- a2Y2

y (T ) Yl

b2 (x * 2)2  / b 2 v*
2 2  y )/sinh2(_A(-_*)+B) for -(x 2 ) > a 2 Y2

v b2 * b*2 2 b2 (xV*)2y2 ) y 2  -- x2 ('-) for ( a2 y2v

b b2 *2 *

2 * /cs'b*2 ,V(2"2 < a *

(y*- 2 (x *))/COS2(C('T-T)+D) for " x- a2Y 2

b2 V*)2 2a V*
where A T (x 2  - b---2 y 2
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Table I. (cont.) - 10

12. P (concluded)12 B4

V*

B coth 2a
V*

(x 2 -b 2

2 2 v* (x ")2

2 bt 2 -

D =tan1I(2a. x 2 X*2

2 2 2

and

f

P 11( r )  P exp{-aylY*(T- T)} with p = - 'i
xI  yl

dP2  * v*
_ L-= -b 2yq 2  with p2 (r=t) = p2

q ( T ) = qv* - al (T-)

dq 2  * v*
d- -'a2 p2 - b 2 x 2 q 2  with q 2 (T=T) = q2

We have not been able to develop solutions in terms of "elementary" functions

to the equations for p2  and q2'
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Table I. (concluded) - 11

u*(T) M0
13. PB2 and PB3 v*(T) for T v T

I

Results are similar to those for P above in 12.

14. P • 0u*() fr T

v*() 0

Results are similar to those for P' above in 12.
B4

15 . p u*(T) =1 I15. Pfor IrS :T
A4 v*(T)0 SL U

, 0

Results are similar to those for P above in 4.
Al
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5.2.3. Numerical Examples.

A computer program to calculate numerical values for information given

in Table I was written in FORTRAN for the IBM 360 computer. A plot of the field

of extremals (see Figures 5, 6, and 7 below) is generated by this program. The

closed-form analytic results presented in T'ble I are used whenever possible.

Approximate numerical solutions to transcendental equations (for the determination

of, for example, Tu, Tv, etc.) are developed by the well-known Newton-Raphson

method. In those tases for which closed-form solutions are not available to the

state and adjoint equations, a stndard fourth order Runge-Kutta numerical inte-

gration method is used. A time step, AT, was used in these numerical integra-

tions which yielded agreement to the fifth place to the right of the decimal

place in test cases in which the approximate numerical solution could be compared

with the exact solution.

Parameter sets for the numerical examples given in this paper are shown

in Table II. For our problem (2) we may considev time to be an additional state

variable so that the state space is five dimensional, i.e. the state variables

are t, x, x 2 , y1 , and Y2 . Thus, unfortunately, we cannot graphically depict

the field of extremal trajectories but must be satisfied with viewing "cross-

bection" plots of it.

Table II. Parameter Sets Used to Generate Numerical
Results Shown in Figures 5, 6, and 7.

Parameter f f f

Set a1 1  a1 2  a2  b1  b2  x1  x2  Y2

1 0.003 0.006 0.01 0.004 0.005 4.0 8.0 8.964

2 0.003 0.006 0.01 0.004 0.005 4.0 8.0 11.597

t Ihe author would like to tlhank Captain Jeffrey L. Ellis (D. S. Army) for doing
this work. Subsequent ccmptational contributions were made by Captain Robert
J. lill, III (U. S. Army).
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The most illuminating plot for gaining insight into the structure of the

optimal fire support strategies for (2) is that of extremal trajectories in

terms of y1/Y2 versus backwards time, r. This is shown for parameter set

1 in Figure 5. The corresponding strategic variable values for X and Y

(i.e. u* and v*) along each extremal are also given. Other plots have

been considered, but they provide little, if any, additional insight.

The most significant features of the field of extremals shown in Figure

5 are the two U-singUia.: "surfaces": there is one in x,,- , space in

V-phane I and one in -space in V-phase II. In each phase, X uses the

strategy U = 1 above the singular "surface" and the strategy U = 0 below it.

Similar to our discussion in [32], the singular surfaces are present i-. che

field of optimal trajectories so that the X artillery avoids "overkilling"

tit',er Y1 or Y This insight is obvious when one, for eAample, considers

(dyl\dt!
x2 = b1y.

, the rz,te of destruction of Y1 per unit of X artillery decreases over

time as the Y1 force level decreases (see [31] and [32]).

Results for parameter set 2 are shown in Figure 6. There is a void

(see p. 169 and also p. 187 of [21]) in the field of extremals. This is because

1-1 backwards time at the end T of the U-singular subarc in V-phase II, we
v

woulti have Us (T ) (as given in Figure 3) equal to 1.054 if the adjoint
S*

variabler were continuous at r v . The following theorem further explains this

situation.
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THEOREM 2: There can be no U-singular subarc beginning in

backwards time at T with alb 1  Y for

I b (P2 (v)x 2 + b2 q2 (T v)Y2 < 0.

When a U-singular subarc begins -t T with
V

a11 bl11- a1 2b2y2 , there is no discontinuity in the

adjoint variables at T = T (i.e. a = 0 in (37)).V

PROOF: Immediate by (27) and (37)• Q.E.D.

Additionally, Theorem 3 gives the extremal transitions in X's strategy possible

from the U-singular surface in V-phase II as we work backwards from T . Thus,V

since b1P2 (Tv)X2 < b2 (-q2 (TV))y 2  for parameter set 2, a void would exist in

the field of extremals if the adjoint variables were continuous at T

THEOREM 3: Assume that there is no discontinuity in the adjoint

variables at T = T with a . Thenv 11lblyl a 1 2 6 2 y2.Te

I. if b1 P2 (Tv)X2 < (T v))Y2' then we can only

have u*(T) = 0 for T E (T ,T +6) where 6 > 0,

II. if b P2 (Tv)x2 - b2b(-q 2v ))y,,, then we can have

(a) 0,

u*(T) = (b) (l-q 2 y2 (p 2 X2 )) b +b

2c) 1,

for T C (TV ,V+6) where 6 > 0.

PROOF: (a) When we are on the singular surface in V-phase II at T v  Tv

then by (22) and (23) and the continuity of the dual variables we have

S TT+ 0'= + 0
Su (r =r ) = Su ( =t+ ) = 0,

u V U V

and
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I

o. ++ (2q~y 2 (47

where S denotes U-~2 b+ 2 pxy{u( -1 1 b1I y

(b) Considering a Taylor series expansion about T = t v we have by

the above for T T += T

V V
(-T)2 0

Su(T) = 2V Su(T), (48)

where T E (T ,T).

V

00* *

(c) Whnu() 0fr' t,~S, then

*o + 2 q2Y2S u(T=Tv ) -a 2(b 2)P2 x2Y2( _ p2 *) 0
S~r~r ) L 2X2j

so that 3 6 > 0 such that S (T) < 0 for all T E (T ,+61). Thus, we
1 u Vvvl

can always have u* = 0 as we work backwa.ds in V-phase I from the U-singular

subarc in V-phase II.
|*

(d) Now let b P2 kT')X2 ; b2 (-q 2 (V))Y 2 . By (26), the u-singular

control in V-phase I US 5  (l-q 2y2/(p2 x2 )) *b9)/(b I+b 2) 1. Thus, the

*+ 0 0 +
U-singular subarc is possible. When u*(r ) 1, then Su(t=r ) > 0 by

V u V

(47). When inequality holds, it follows that 3 6 > 0 such that S () > 0

for all T C (v ,TV+6 1). Clearly, we cannot have u* = 1 if b1P2(Tv)X 2 <

b 2 (-q 2 (T*))y 2 . Q.E.D.

The same analysis as used in the proof of Theorem 3 applies on a

U-singular subarc in V-phase I when v* = 0. As long as (27) holds, one

has three options similar to those of part II of Theorem 3.
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5.2.4. Filling in a Void.

We have emphasized that H, Z(t), and %(t) are continuous functions of

time except possibly at manifolds of discontinuity of both U* and V* (see Section

4.3 above). From Theorem 3 it follows that a void must exist in the field of

extremals when these functions are continuous and blP2 (T )X 
< b22-q2(Tv

12v 2 2 ))2

At Tv, moreover, v* changes (as we progress backwards in time) from 1 to 0

and u* from b2 /(bI+b 2 ) to a differe.at value. Thus, we have a manifold of

discontinuity of both U* and V*. Moreover, considering results given above,

it is readily shown that U*(T) remains for increasing T (i.e. backwards

time) equal to zero once it changes to zero. Then from Theorems 2 and 3 it

follows that for b 1 p 2 (Tv )x 2 < b 2 (-q 2 (TV ))Y 2  the dual variables must be

discontinuous to fill in the void, and we must have u*(T) = 1 for T < T < T

Furthermore, considering Figure 6 and considerations "in the large," the mani-

fold of discontinuity must lie on the V-transition surface.

Thus, we have eEtablished that for a1 1 b 1 Y = a1 2b 2y2 we have

+
1*(T,) = b /(bl+b 2 ), u*(+) = 1

and + (49)
v ) = 1 an v*(T+) =0
V V

It remains to determine the function T (x,y, of (29) so that and a
ax ax.

may be computed, and the jumps in H, Z, and % subsequently determined (see

(30) through (33)). It shoul;. be clear that it is impossible to explicitly

determine Tv(x,y). However, by computation of five points on the V-transition

surface, the desired partial derivatives may be estimated by using linear

approximations to the appropriate directional derivatives and solving a system

of four linear equations in four unknowns. For paratnetei set 2 (as the reference

case), this yielded the following estimates
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8T aT
-x = 0.0000, a = -0. 295,
aX@ 2

(50)
3T 3T

- -0.0167, v -0.0331.
ByI  BY2

It is, therefore, convenient to re-write the jump conditions across

the manifold of discontinuity of both U* and V*.

aT+ 3Tv
p )Pl(tv) P2 (t+) = P2t

1~~ v 2v 2v a

at
q ( +) = q - - Callb1 , (51)

ay 1

+ iV

q2(T+) = (T -- p + oa2b2 v 2 v DY2  12 P

where p and a ara related by (36). In this case the jumps (37) and (38)

in the switching functions simplify to

al (l)Yl2[ly 3T DT]

a (b 2yx -v - by v
+ )2 11 1 1 2 [lyl Dy1 22 2ay 2j_SU(T ) (b1)2yl + a 1 2 (b2 )2 y 2 + l a t DT (52)

1-a K - b- y -2 Dx-'2 1 1 2 y j

and

aT
a1 1a 2 (b1 ) ylx 2 ax

S (T ) = (53)
V- V vT - by x2 at (v3

t22 2x 112a7,-

Since v*(tr ) 0, we must have S (T )+ :5 0 so that (50) and (53)

yield that a > 0. It should be clear that a = 0 if and only if 11, k, and
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**+are continuous at T . For a > 0, the condition that u*(l = 1 yields

that we must have

S (T
U O >Y0, (54)

a

where S (rv) is given by (52). Although it cannot in general be guaranteed
U V

that (54) will always hold when a void in the field of extremals such as that

shown in Figure 6 exists, it should be clear that it must if the problem (2)

is to have a solution. The author conjectures that this is true. It is readily

shown that when (54) holds, we have

S (T) > 0, u(,r*+ ) < 0, and S (T* ) < 0. (55)
u v u v v v

The appropriate value for a is determined by "considerations in the

large:" the structure of the enhire field of extremals determines the value of
I*

this parameter. In Figure 7, we let T denote the backwards time at which
U

1*the U-singular subarc is entered in V-Phase I. Corresponding to T is a

which yields the first and second conditions (18) and (25) (with u s:rl) for
* 1I* * *

a U-singular subarc with V = 0 at >t . For 0< a<o , one uses
u v

*+ I I *
u (W) = 1 for T < T< T and then u*(T) = 0 for T>T . For a>0 , theV u u

U-switching function S (T) never changes sign so thaL u (T) = 1 for all
u

T>T v . Thus, by manipulation of a, one may fill in the void in the field of

extremals in V-Phase I. The resulting field of extremals is shown in Figure 7.

5.2.5. The Case of Negligible Y Small Arms Effectiveness.

It seems appropriate to consider what happens to the solution to the

problem at hand as the (relative) effectiveness of Y1  (small arms) fire becomes

negligible, i.e. as a1 + 0. Let us consider (either) Figure 5 (or Figure 7).

The 11-singular "surface" in V-Phase II has equation y /Y,, - a 2 b2 /(a 1 bl)

1 12 1
! A6
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Thus, as a11 + 0 with the other parameters being held constant, this singular

"surface" appears higher and higher on the y 1 /y- axis in Figure 5. In tize

limit, the singular surface does not appear in the finite part of the plaune.

Thus, we have shown that an optimal. strategy in which a side divides the fire

of its supporting weapon system between the enemy's primary (infantry) and

supporting systems can only occur when the enemy's infantry has some fire effec-

tiveness (in the sense of a non-zero Lanchester attrition-rate coefficient)

against his infantry.

6. Discussion.

In this paper we have examined bite dependence of optimal Lime-sequential

fire-support strategies on the form of the combat attrition model by considering

a differential game (see equations (2)) with slightly different combat dynamics

than those in the fire-support differential game considered by Kawara [22] (see

equations (1)). For this fire-support differential game (2) we developed first

order necessary conditions of optimality and constructed "cross-section" pictures

of the field of extremals. By comparing and contrasting the structure of optimal

fire-support strategies for our problem (2) with that for Kawara's fire-support

differential game (1), one begins to understand the n-ture of the dependence or

optimal strategies on the combat dynamics by also comparing and contrasting tile

combat attrition equations fo these two differential games.

Our fire-support differ'ential game (2) was similar to Kawara's problem (1)

(see [22]) except that we let the attacker's (i.e. X's) a-tillery produce

"linear-law" attrition against both the defender's artillery and also his infantry

and let the defender's infantry produce "linear-law" attrition against the

attacker's infantry. As contrasted with the optimal time-sequen-ial fire-support

For convenience we use the term "linear-law" attrition to d, note an attrition
process in which a target-type undcrgoes attrition at a rate proportional to the
product of the numbers of firers and targets (see [31], (32]).
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strategies for Kawara's problem (1) of always concentrating Jl artillery fire

on first enemy artillery and then later enemy infantry (the timing of the switch

being force-level independent), for our problem (2) the optimal st:ategy for one

combatant (the attacker, X) depends directly on the enemy's force levels and

is no longer to always concentrate all fire on either the enemy's primary or

secondary weapon system. The latter result, moreover, was shown to depend on

the defender's infantry having some fire effectiveness (in the sense of a non-

zero Lanchester attrition-rate coefficient) against the attacker's infantry.

The solution to (2) is characterized by the presence of singular surfaces

(in Issacs' terminology (.ee [21]), universal surfaces (see also [18])), a differ-

ent one for each V-phase of battle. When the battle state reaches one of these

surfaces, X follows an optimal strategy of dividing his artillery fire between

enemy infantry and artillery in order to avoid "overkill." Another characteristic

of the optimal fire-support strategies (not present for Kawara's [22) problem (1a)

is that X's optimal strategy may sometimes depend on Y' distribution of

supporting fires. This behavior occurs on the singular surfaces. In fact, X

sometimes must react instantaneously to changes in Y's fire distribution.

The development of even a partial solution to (2) has involved a solution

phenomenon not previously reported for Lanchester-type differential games: the

f
adjoint (or dual) variables are discontinuous across a manifold of disccntinuity

of both U and V This manifold of discontinuity exists for a certain range

of parameter values in the solution to the problem at hand (2). Furthermore,

there is a military interpretation to this manifold of discontinuity: if Y2

concentrates fHre on X2 and X2 oi YI, then when Y2 changes to concentrating

all fire on X, X must re-evaluate the worth of a Y2 unit because it now has

tThe reader should recall that these represent the mnarinAJ ,alues of force types,

i.e. p = where V = V(t,x,v) denotes Ohe value of the differentiali~.P2 (t  ax Wxt

game (see [14], ?211).
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a direct influence on the payoff. Such a discontinuity in tIe adjoint variables

is unique to differential games 'see !3], [4]) (i.e. it cannot occur for a one-

sided optimal control problem).

It should also be pointed out that the presence of singular (i.e. universal)

surfaces in the solution to (2) is apparently independent of the tirm of the

criterion functional (here terminal payoff) and depends only on the combat dynamics.

For purposes of comparison we considered the same payoff as considered by Kawara

[22]. We also showed that the singular (i.e. universal) surfaces can only be

present in the solution when the defender's infantry Y1 has a nonzero casualty

producing capability against XI .

The problem (2) considered in this paper has certain similarities to the

"War of Attrition and Attack: Second Version" studied by R. Isaacs (see pp. 330-

335 of [21]). We have, however, developed a much more complete solution to our

problem than that given in [21] for Mengel's problem. Although this problem (2)

possesses some similarities Lo the Lanchester-type optimal control problem

studied by us in [31], its sclution has turned out to be much more complex. Our

developments in this paper, however, have been significantly helped by intuition

gained in the study of the simpler, one-sided problem (see [32] for a further

discussion).

As a result of our investigation here, we hope that a better understanding

of optimal fire-support strategies has been developed. As is always the case,

however, the insights gained into the optimization of combat dynamics from our

study of the differential game (2) are no more valid than the combat model itself.

Our work here shows that .he functional forms of the various target--type casualty

rates produced by the artillery essentially determines the most significant aspects

of the structure of the optimal fire-support strategies. Thus, our study of this

optimization problem shows the impcrLance of determining the appropriate (Laacics;t

type) model of combat dynamics.
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